Think of a robot and you probably imagine something made of metal and wires. But scientists are now exploring the softer side of robotics, developing devices made from squishy biological materials that adapt quickly to the environment around them. These bio-bots, as they're known, could transform the robots of the future. A team of US researchers has used 3D printing to create a tiny soft 'skeleton' made of a special gel. This is then impregnated with mouse muscle stem cells, which grow into a sheet of strong muscle cells (pictured) to provide power and movement. Normally, muscle cells in the body respond to electrical signals, and it's the same here: an electrical zap gets the bio-bot crawling along like an inchworm. It's pretty slow – just a fraction of a millimetre per second – but this technology could one day lead to revolutionary biological machines.
Written by
BPoD stands for Biomedical Picture of the Day. Managed by the MRC Laboratory of Medical Sciences until Jul 2023, it is now run independently by a dedicated team of scientists and writers. The website aims to engage everyone, young and old, in the wonders of biology, and its influence on medicine. The ever-growing archive of more than 4000 research images documents over a decade of progress. Explore the collection and see what you discover. Images are kindly provided for inclusion on this website through the generosity of scientists across the globe.
BPoD is also available in Catalan at www.bpod.cat with translations by the University of Valencia.